文章编号:1674-8190(2023)02-055-10

轮胎刚度特性对大型民机前起落架摆振影响研究

冯广^{1,2},丁建宾¹,姜义尧¹,金军²,余好文²,蒋炳炎¹

(1.中南大学高性能复杂制造国家重点实验室,长沙410083)

(2.中航飞机起落架有限责任公司,长沙 410200)

Research on influence of tire stiffness characteristics on shimmy of large civil aircraft nose landing gear

FENG Guang^{1,2}, DING Jianbin¹, JIANG Yiyao¹, JIN Jun², YU Haowen², JIANG Bingyan¹

(1. State Key Laboratory of High-Performance Complex Manufacturing, Central South

University, Changsha 410083, China)

(2. AVIC Landing-gear Advanced Manufacturing Co., Changsha 410200, China)

Abstract: Tire stiffness is one of the important parameters of tire dynamics model. The influence law of tire stiffness on the shimmy of large civil aircraft nose landing gear can provide reference for the anti-shimmy design of large civil aircraft nose landing gear. The nonlinear mathematical model of the nose landing gear shimmy is established, and the shimmy region diagram of different tire torsional stiffness and tire side bending stiffness is calculated by using Matlab/Matcont software. The influence law of tire torsional stiffness and tire side bending stiffness on the shimmy of the nose landing gear is studied, and the sensitivity of the two on the shimmy of the nose landing gear is compared. The results show that the sensitivity of tire torsional stiffness to the impact of nose landing gear shimmy is greater than that of tire lateral bending stiffness. When the positive torque coefficient is decreased by 1%, the maximum critical damping of torsional shimmy is decreased by 0.88%, and the minimum critical damping of lateral shimmy is increased by 33.87%. Reducing the torsional stiffness of tire and increasing the lateral stiffness of tire are beneficial to restrain the yaw of large civil aircraft nose landing gear.

Key words: large civil aircraft; nose landing gear; shimmy; tire stiffness; nonlinearity; bifurcation

收稿日期: 2022-04-14; 修回日期: 2022-06-12

基金项目:工信部民机专项(JZ025-XY-003)

通信作者: 蒋炳炎, jby@csu. edu. cn

引用格式: 冯广,丁建宾,姜义尧,等.轮胎刚度特性对大型民机前起落架摆振影响研究[J]. 航空工程进展, 2023, 14(2): 55-64. FENG Guang, DING Jianbin, JIANG Yiyao, et al. Research on influence of tire stiffness characteristics on shimmy of large civil aircraft nose landing gear[J]. Advances in Aeronautical Science and Engineering, 2023, 14(2): 55-64. (in Chinese)

0 引 言

飞机在起飞与着陆滑行过程中,前起落架机 轮可能出现一种偏离其中心位置的剧烈振动,称 之为摆振。摆振主要由机轮绕其定向轴的扭转和 起落架支柱的侧向弯曲变形组成,轮胎与地面接 触部分产生交变变形印。飞机前起落架和主起落 架均会发生摆振,但前起落架居多。摆振是一种 有害的自激振动,前起落架轻微的摆振会导致机 身抖动,飞行员操纵性变差,加剧前起落架结构疲 劳破坏。严重的摆振可能会导致飞机运动失控, 发生灾难性事故^[2]。前起落架摆振产生的根本原 因是扭转阻尼不够,除此之外,磨损的轮胎和结构 件稳定距不足、扭转间隙过大等也是诱导前起落 架发生摆振的重要因素[3]。向宗威等[4]综述了起 落架结构间隙的建模方法及其对前起落架摆振的 影响。飞机柔性^[5]、油液压缩性^[6]对前起落架摆振 也有一定的影响。

轮胎刚度特性作为前起落架的强非线性因素 之一,对前起落架摆振具有重要影响。周进雄等[7] 建立线性摆振分析模型,结果表明,增大轮胎侧向 刚度将降低发生"结构型"摆振上临界阻尼值;H. J. Dionisio 等^[8]采用前轮摆振的线性数学模型^[9], 研究了轮胎侧向刚度对摆振稳定性的影响,研究 结果表明,随着轮胎侧向刚度的增大,系统稳定区 域增大,而且在高速下系统的不稳定区域变得更 低;陈熠等[10]通过建立前起落架线性摆振数学模 型,对某型客机前起落架进行了摆振分析,研究结 果表明,增大轮胎扭转刚度,摆振临界速度和摆振 临界阻尼值均增大,摆振频率也略有增大,增大轮 胎侧向刚度,摆振临界速度和摆振临界阻尼值也 增大,而且速度越大影响越明显。上述文献采用 的是数学建模法中的线性化方法,该方法基于Lyapunov判定准则对系统进行分析,虽然简单方便, 只需反复迭代计算系统特征矩阵的特征值,但不 能够准确、快速地区分扭转摆振和侧向摆振,所得 出的结论不够全面。

除此之外,冯飞等^[11]建立了前起落架全柔体 摆振动力学模型,研究了轮胎侧向刚度对临界防 摆阻尼的影响,结果表明增大轮胎侧向刚度会导 致临界防摆阻尼显著增加;何绪飞等^[12]建立三维 简化动力学仿真模型,开展刚柔耦合起落架结构 的摆振分析,结果表明随着轮胎侧向刚度的减小, 摆角的收敛速度更快。使用多体动力学仿真的方法研究前起落架摆振,采用真实具体的模型,通常可以减少对模型的简化,但其同样无法准确、快速区分扭转摆振和侧向摆振,所得出的结论不够全面。

近些年,国内外多采用分岔理论的方法研究 前起落架摆振问题^[13-17]。P. Thota 等^[14]通过建立 前起落架非线性摆振数学模型,使用分岔理论的 方法,研究了轮胎充气压力对前起落架摆振的影 响规律,结果表明,随着轮胎充气压力的增加,轮 胎的扭转摆振和侧向摆振区域均减小,即有利于 抑制摆振;陈大伟^[18]、冯飞^[19]、蔡佳圻^[20]采用分岔 理论方法分析前起落架摆振非线性数学模型,从 不同角度研究了前起落架摆振机理。上述文献研 究内容为前起落架摆振模型,采用的方法是分岔 理论,但是未给出轮胎刚度特性对摆振的影响 规律。

本文采用分岔理论的方法^[13-17],深入研究轮胎 刚度特性对前起落架摆振的影响规律,通过求解 前起落架非线性摆振数学模型得到摆振区域图, 并对不同类型摆振进行区分。首先分别研究轮胎 回正力矩系数与轮胎扭转刚度的关系,轮胎侧向 力系数与轮胎侧弯刚度的关系;然后通过改变不 同轮胎回正力矩系数、轮胎侧向力系数,计算前起 落架摆振区域图,进而总结研究轮胎扭转刚度、轮 胎侧弯刚度对前起落架摆振的影响规律。

1 摆振动力学模型

1.1 摆振物理模型及坐标系建立

前起落架摆振模型众多,根据研究的侧重点 所建立的摆振数学模型不同。近些年来国内外研 究者研究较多的摆振数学模型有上端固支单轮模 型^[21]、上端固支双轮模型^[22]、考虑机身弹性的单轮 模型^[15,23]、考虑间隙特性的双轮模型^[17]等。其中, 英国 Bristol大学 P. Thota 等^[22]建立的上端固支双 轮摆振非线性数学模型,该模型具有双轮配置特 性,同时模型中的张线接触轮胎模型可以较为准 确地描述轮胎刚度特性,故本文采用该模型进行 计算。出于内容完整性的考虑,对摆振物理模型 及数学模型作简要介绍。

将飞机滑行方向的反方向定义为起落架坐标 系的*x*轴,垂直向上为*z*轴,*y*轴满足右手法则,如 图1所示。

图 1 大型民机前起落架摆振物理模型及坐标系建立^[22] Fig. 1 Physical model and coordinate system establishment of large civil aircraft nose landing gear shimmy^[22]

将机身的作用视为垂直载荷F₂作用到前起落架上,起落架跟随机身以恒定速度V,通过半径为 R、间距为D的两个机轮在跑道上直线滑行。在平 稳滑行过程中,飞机的垂向位移以及起落架缓冲 器的行程变化很小,故忽略起落架的垂向位移。

前起落架摆振动力学模型考虑四个变形自由 度,分别是:起落架支柱绕定向轴S的扭转角ψ,起 落架支柱绕X轴的侧弯角δ,左、右轮胎的侧向位 移λ_L、λ_R,用于描述轮胎的变形。

1.2 摆振动力学方程

某大型民机双轮配置的前起落架摆振动力学 模型中扭转自由度微分方程如式(1)所示。

$$I_{\phi}\ddot{\phi} + M_{K_{\phi}} + M_{D_{\phi}} + M_{K_{st}} + M_{K_{st}} + M_{D_{syl}} + M_{D_{syl}} + 2I\dot{\delta}\frac{V}{R} + (F_{K_{st}} + F_{K_{st}})e_{\text{eff}} - F_{zL}\sin\phi\left(e_{\text{eff}}\sin\theta + \frac{D}{2}\cos\theta + l_g\sin\delta\right) - F_{zR}\sin\phi\left(e_{\text{eff}}\sin\theta - \frac{D}{2}\cos\theta - l_g\sin\delta\right) = 0$$

$$(1)$$

式中: $I_{\phi}\ddot{\psi}$ 、 $M_{K_{\phi}}$ 、 $M_{D_{\phi}}$ 分别为支柱扭转的惯性项、刚 度项和阻尼项,其中, $M_{K_{\phi}} = k_{\phi}\phi$, $M_{D_{\phi}} = c_{\phi}\dot{\phi}$; $M_{K_{at}}$ 、 $M_{K_{at}}$ 分别为左、右轮胎的回正力矩,如式(2)所示; $2I\dot{\delta}(V/R)$ 为扭转自由度上的陀螺力矩。

$$M_{K_{aL/R}} = \begin{cases} k_{a} \frac{\alpha_{m}}{\pi} \sin\left(\alpha_{L/R} \frac{\pi}{\alpha_{m}}\right) F_{yL/R} & \left(\left|\alpha_{L/R}\right| \leq \alpha_{m}\right) \\ 0 & \left(\left|\alpha_{L/R}\right| > \alpha_{m}\right) \end{cases}$$

$$(2)$$

在轮胎的极限侧滑角 α_m 内,回正力矩 $M_{K_{aLR}}$ 随 侧滑角 $\alpha_{L/R}$ 按正弦规律变化;在极限侧滑角外,轮 胎发生了侧滑,回正力矩为 $0_{o}M_{D_{uu}}$, $M_{D_{uu}}$ 分别是 左、右轮胎的扭转阻尼力矩,如式(3)所示。

$$M_{D_{\lambda\phi L}} = M_{D_{\lambda\phi R}} = \frac{c_{\lambda\phi}\dot{\psi}\cos\phi}{V}$$
(3)

 $F_{K_{u}}$ 、 $F_{K_{u}}$ 分别为左、右轮胎的侧向力,如式(4) 所示。

$$F_{K_{\mu/R}} = k_{\lambda} \tan^{-1} (7.0 \tan \alpha_{L/R}) \cdot \cos \left[0.95 \tan^{-1} (7.0 \tan \alpha_{L/R}) \right] F_{yL/R}$$

$$(4)$$

*e*_{eff}为有效稳定距,由于支柱前倾角的存在,有 效稳定距不等于机械稳定距,如式(5)所示。

 $e_{\rm eff} = e\cos\phi + (R + e\sin\phi)\tan\phi \qquad (5)$

机身给前起落架施加的垂向力*F*_z不平衡地分 配到左右两个机轮上,分别为*F*_{zL}、*F*_{zR},如式(6) 所示。

$$F_{zL/R} = \frac{F_z}{2} \left[1 \mp \left(\frac{k_v D}{F_z} \right) \sin\left(\gamma + \delta\right) \right] \quad (6)$$

式中: γ 为由于前倾角影响的几何量, $\gamma = \psi \sin(\phi)$; θ 为机轮摆角,由于支柱前倾角的存在, 机轮摆角不等于支柱扭转角, $\theta = \psi \cos \phi$ 。

某大型民机双轮配置的前起落架摆振动力学 模型中侧弯自由度微分方程如式(7)所示。

$$I_{\delta}\ddot{\delta} + M_{K_{s}} + M_{D_{s}} + M_{\lambda_{ss}} + M_{\lambda_{ss}} - 2I\dot{\psi}\frac{V}{R} + M_{D_{sst}} + M_{D_{sss}} - F_{zL}\left(e_{\text{eff}}\sin\theta + \frac{D}{2}\cos\theta + l_{g}\sin\delta\right) - F_{zR}\left(e_{\text{eff}}\sin\theta - \frac{D}{2}\cos\theta - l_{g}\sin\delta\right) = 0$$

$$(7)$$

式中: $I_{\delta}\ddot{\delta}$ 、 $M_{K\delta}$ 、 $M_{D\delta}$ 分别为支柱侧弯的惯性项、刚 度项和阻尼项,其中, $M_{Ks} = k_{\delta}\delta$, $M_{Ds} = c_{\delta}\dot{\delta}$; $M_{\lambda_{st}}$ 、 $M_{\lambda_{st}}$ 分别为左、右轮胎侧向力在侧弯自由度上的力矩,如式(8)所示; $-2I\dot{\psi}\frac{V}{R}$ 为侧弯自由度上的陀螺 力矩; $M_{D_{ML}}$ 、 $M_{D_{MR}}$ 分别为左、右轮胎的侧向阻尼力 矩,如式(9)所示。

$$M_{\lambda_{sL/R}} = l_g F_{K_{sL/R}} \cos \theta_s \cos \phi \tag{8}$$

$$M_{D_{ML}} = M_{D_{MR}} = \frac{c_{\lambda\delta}\delta\cos\phi}{V} \tag{9}$$

某大型民机双轮配置的前起落架摆振动力学 模型中左、右轮胎侧向变形自由度微分方程如式 (10)~式(11)所示。

$$\dot{\lambda}_{L} + \frac{V}{\sigma} \lambda_{L} - V \sin \theta_{s} - l_{g} \dot{\delta} \cos \delta - (e_{\text{eff}} - h) \cdot \cos \theta_{s} \dot{\psi} \cos \phi - \frac{D}{2} \dot{\psi} \sin \theta_{s} \cos \phi = 0$$
(10)

$$\dot{\lambda}_{R} + \frac{V}{\sigma} \lambda_{R} - V \sin \theta_{s} - l_{g} \dot{\delta} \cos \delta - (e_{\text{eff}} - h) \cdot \cos \theta_{s} \dot{\psi} \cos \phi + \frac{D}{2} \dot{\psi} \sin \theta_{s} \cos \phi = 0$$
(11)

起落架支柱的扭转角与侧弯角,通过轮胎的 侧向力进行耦合作用。基于张线理论^[4]建立轮胎 模型,以轮胎触地点中心线的侧向位移λ和侧滑角 α作为轮胎变形量,但二者并不独立,其关系为:

 $\alpha_{L/R} = \tan^{-1} \left(\frac{\lambda_{L/R}}{\sigma} \right)_{\circ}$

1.3 参数取值与延拓范围

模型参数参考某大型民机的前起落架参数^[24],如表1所示。

考虑到参数分岔图像的完整性,部分参数的 选取,如前向滑行速度等,可能超过实际的取值范 围。研究过程中,采用单因素法研究轮胎刚度对 前起落架摆振的影响,除延拓参数外,其余参数取 表1中的固定值。

表 1	前洞	起落架摆	振模	型参	数及	其数值	
Table	1	Paramet	ers a	nd va	alues	of nose	

landing gear shimmy model

参数类别	参数	数值
	稳定距 e/m	0.12
	前起落架高度 l_g/m	2.5
	支柱扭转转动惯量 $I_{\phi}/(\text{kg}\cdot\text{m}^2)$	100
	支柱扭转刚度 $k_{\psi}/(N \cdot m \cdot rad^{-1})$	3.8×10^{5}
结构参数	垂直载荷 F_z/kN	260
	支柱侧弯转动惯量 $I_{\delta}/(\text{kg}\cdot\text{m}^2)$	600
	支柱侧弯刚度 $k_{\delta}/(N \cdot m \cdot rad^{-1})$	6.1 $\times 10^{6}$
	支柱侧弯阻尼 $c_{\delta}/(N \cdot m \cdot s \cdot rad^{-1})$	300
	支柱前倾角 ϕ /rad	0.1571
	机轮半径 R/m	0.362
	接触半宽 h/m	0.1
	松弛长度 σ/m	0.3
	轮胎侧向刚度 k_{λ}/rad^{-1}	0.002
	轮胎扭转刚度 $k_{\alpha}/(\mathbf{m}\cdot\mathbf{rad}^{-1})$	1.0
轮胎参数	轮胎垂向刚度 $k_v/(N \cdot m^{-1})$	4×10^{6}
	轮胎扭转阻尼 $c_{\lambda\phi}/(N \cdot m^2 \cdot rad^{-1})$	270
	轮胎侧向阻尼 c _{λδ} /(N·m ² ·rad ⁻¹)	180
	极限侧滑角 α_m /rad	0.1745
	机轮转动惯量 $I/(kg \cdot m^2)$	0.6
	机轮间距D/m	0.2
 <i> </i>	减摆线性阻尼 $c_{\phi}/(N \cdot m \cdot s \cdot rad^{-1})$	0~2 500
延扣豕奴	滑跑速度 $V/(m \cdot s^{-1})$	0~150

2 轮胎扭转刚度和侧弯刚度对摆振 影响分析

使用 Matlab/Matcont 软件^[25]计算第1节中的 前起落架摆振数学模型,通过改变不同的轮胎刚 度参数,计算得到前起落架摆振区域图,进而总结 各轮胎刚度对前起落架摆振的影响规律。

为了对摆振区域图有更直观的理解,取前起 落架系统某典型参数进行数值仿真分析,以区分 前起落架扭转摆振和侧向摆振。系统发生扭转摆 振时,轮胎侧向变形中的贡献主体是支柱扭转;系 统发生侧向摆振时,轮胎侧向变形的贡献主体是 支柱侧弯。系统发生扭转摆振的概率较低,侧向 摆振的概率较高。通过Matlab/Simulink^[26]对前起 落架摆振数学模型进行数值仿真,取系统延拓参 数速度为 V=3 m/s,减摆阻尼 $C_{\phi}=600$ N·m·s/ rad,初始激励为支柱扭转角 $\phi=0.02$ rad,计算得 到系统各自由度时域图,如图 2所示,可以看出:该 参数(V=3 m/s, $C_{\phi}=600$ N·m·s/rad)下前起落 架不发生摆振,系统各自由度时域图均收敛;系统 由初始状态到最终收敛,中间有一段过渡区域,该 过渡区域内系统发生摆振。

对各自由度时域数据进行快速傅里叶变换可 得到对应参数下各自由的频谱图,如图3所示,可 以看出:支柱扭转角频谱图中既有扭转摆振频率 成分(9.8 Hz),又有侧向摆振频率成分(16.1 Hz), 同样支柱侧弯角频谱图也是如此,这说明支柱扭 转自由度和侧弯自由度互相耦合,这一点可以从 系统微分方程中得到验证。轮胎侧向变形频谱图 中,同样存在扭转摆振和侧向摆振两个频率成分, 但侧向摆振频率成分处于主导地位,说明系统在 过渡区域内发生的摆振是侧向摆振。

Fig. 3 Spectrum diagram of various degrees of freedom of nose landing gear shimmy system at $V=3 \text{ m/s}, C_{\varphi}=600 \text{ N}\cdot\text{m}\cdot\text{s}/\text{rad}$

2.1 轮胎扭转刚度对摆振影响分析

轮胎扭转刚度是指在单位侧滑角下轮胎受到

的回正力矩。在前起落架摆振模型中,轮胎侧滑 角是变量,回正力矩是非线性的分段函数,其表达 式中包含轮胎侧滑角变量,因此轮胎扭转刚度在 模型中是动刚度。根据公式(2),进行量纲分析, 可知轮胎回正力矩系数的物理意义是轮胎侧滑角 为单位值时,轮胎所受的回正力矩与垂向力的比 值。轮胎回正力矩系数*k*_a对动态的轮胎扭转刚度 影响较大。在Matlab/Simulink软件中对摆振模型 进行数值仿真,计算得到不同轮胎回正力矩系数*k*_a 为0.5、1.0、1.5 m/rad时,轮胎回正力矩与轮胎侧 滑角的关系曲线,如图4所示。

图4 不同轮胎回正力矩系数下轮胎回正力矩与 轮胎侧滑角关系图

Fig. 4 Diagram of relationship between tire rightwing moment and tire sideslip Angle under different tire rightwing moment coefficients

从图4可以看出:轮胎回正力矩满足其非线性 分段函数表达式,在极限侧滑角内部,轮胎回正力 矩与轮胎侧滑角成近似正弦函数关系,在极限侧 滑角外部,轮胎回正力矩为0。除此之外,由于图 中展现的是一段时间内摆振的动态变化过程,可 以发现轮胎回正力矩和轮胎侧滑角在不断变化。 当系统最终稳定时,轮胎回正力矩与轮胎侧滑角 也为0。根据轮胎扭转刚度的定义,可以知道图中 的斜率代表轮胎的扭转刚度。随着轮胎回正力矩 系数的增大,轮胎回正力矩与侧滑角关系曲线的 斜率的绝对值就越大,即轮胎的扭转刚度就越大。

轮胎的扭转刚度随系统自由度发生变化,不 便直接调整。通过调整轮胎回正力矩系数来间接 改变轮胎扭转刚度,计算得到对应的摆振区域图, 研究轮胎扭转刚度对前起落架摆振的影响规律。

某航空子午线轮胎回正力矩系数为1m/rad, 在该数值附近变动,分别计算轮胎回正力矩系数 $k_{a1}=1.02 \text{ m/rad}, k_{a2}=1 \text{ m/rad}, k_{a3}=0.98 \text{ m/rad}$ 时 系统的摆振区域图,分别如图 5~图 7 所示。

图 5 轮胎回正力矩系数 k_{a1} =1.02 m/rad 时摆振区域图 Fig. 5 The shimmy area diagram of tire with positive

torque coefficient of $k_{a1} = 1.02 \text{ m/rad}$

某大型民机前起落架操纵装置与减摆装置合 二为一,在飞机实际工作处于减摆状态时,工作人 员可以通过人为调整减摆阻尼来抑制摆振,因此 在计算摆振区域图时选择的两个参数分别是滑跑 速度和减摆阻尼。摆振区域图中黑色曲线为扭转 摆振 Hopf 分 岔 曲线 H_t, 曲线 上的点所对应的减摆 阻尼值为系统发生扭转摆振时的临界减摆阻尼; 红色曲线为侧向摆振 Hopf 分岔曲线 H₁,曲线上的 点所对应的的减摆阻尼值为系统发生侧向摆振的 临界减摆阻尼。两条Hopf分岔曲线的交点为双 $Hopf 分 盆 点 HH, 分 别 为 左 Hopf 分 盆 点 HH_1 和 右$ Hopf \mathcal{G} $\mathcal{$ 会得到两条 Torus 分岔曲线, 蓝色曲线为扭转摆振 的 Torus 分岔曲线 T,绿色曲线为侧向摆振的 Torus分岔曲线T₁。四条分岔曲线将摆振区域图划分 为七个区域,其中,①区为稳定区域,不发生摆振; ②区为侧向摆振区,仅发生侧向摆振;③、④、⑤区 为扭转摆振和侧向摆振的重叠区^[21],由于Torus分 岔曲线的存在,导致 H_i 曲线与 T_i 曲线围成的③区 仅发生侧向摆振,T,曲线和T,围成的④区具体发 生何种摆振取决于系统的初始条件,H_i和T_i围成 的⑤区仅发生扭转摆振;⑥区为扭转摆振区,仅发 生扭转摆振;⑦区为稳定区域,不发生摆振。从速 度的角度分析,界定 $0 < V \leq V_{HH_1}$ 为低速区, $V_{HH_1} < V \leq V_{HH_2}$ 为中速区, $V > V_{HH_2}$ 为高速区。 低速区包含①区、②区和⑥区的部分区域。飞机 处于低速滑跑的过程中,减摆阻尼较低时会发生 扭转摆振,减摆阻尼较高时会发生侧向摆振。中 速区包含②区的大部分区域、③区、④区、⑤区、⑥ 区和⑦的部分区域。中速区的速度范围比较大, 也最容易发生摆振。高速区包含⑥区和⑦区的部 分区域,高速区只有在减摆阻尼较低时会发生扭 转摆振,减摆阻尼较高时处于稳定区。

从图 5~图 7可以看出:随着轮胎回正力矩系数的减小,处于低速区和和高速区的摆振稳定区逐渐增大,处于中速区的扭转摆振和侧向摆振的重叠区域逐渐减小。当轮胎回正力矩系数从 k_{al}=1.02 m/rad减小到 k_{a3}=0.98 m/rad,摆振区域图左HH分岔点速度从 7.8 m/s增大到 8.8 m/s,右HH分岔点速度从 69.7 m/s减小到 57.7 m/s。除此之外,随着轮胎回正力矩系数的减小,扭转摆振曲线的最大临界减摆阻尼逐渐减小,侧向摆振曲线处于中速区的最小临界减摆阻尼逐渐增大。当轮胎回正力矩系数从 k_{a1}=1.02 m/rad 减小到 k_{a3}=0.98 m/rad,扭转摆振 Hopf分岔曲线的最大临界减摆阻 尼从 1 788 N·m·s/rad逐渐减小到 1 727 N·m·s/rad,侧向摆振 Hopf分岔曲线中速区的最小临界减摆阻尼返新增大到 529 N·m· s/rad。从摆振区域图不同的分区进行理解,随着轮胎回正力矩系数的逐渐减小,摆振稳定区(①区和⑦区)逐渐增大,扭转摆振区(⑤区和⑥区)逐渐增大,侧向摆振区(②区和③区)逐渐减小,扭转摆振和侧向摆振的重叠区(④区)逐渐减小。

2.2 轮胎侧弯刚度对摆振影响分析

轮胎侧弯刚度为单位轮胎侧滑角下的轮胎侧 向力,其易于轮胎侧向刚度混淆,轮胎侧向刚度指 单位轮胎侧向变形下的轮胎侧向力。轮胎侧滑角 与轮胎侧向变形两个变量并不独立,如公式(4)所 示,即轮胎侧弯刚度与轮胎侧向刚度的变化规律 一致。前起落架摆振模型中,轮胎侧向力是非线 性表达式,且包含轮胎侧滑角变量。因此,轮胎侧 弯刚度在摆振模型中也是动态刚度。公式(4)为 经验公式,轮胎侧向力系数并没有明确的物理意 义,但轮胎侧向力系数k,对动态的轮胎侧弯刚度 影响较大。在Matlab/Simulink软件中对摆振模型 进行数值仿真,计算得到不同轮胎侧向力系数 k 为 0.001/rad、0.002/rad、0.003/rad 时,轮胎侧向 力与轮胎侧滑角的关系曲线,如图8所示,可以看 出:发现轮胎侧向力和轮胎侧滑角在不断变化;当 系统最终稳定时,轮胎侧向力与轮胎侧滑角也为 0。根据轮胎侧弯刚度的定义,可以知道图中的斜 率代表轮胎的侧弯刚度。轮胎侧向力系数的增 大,轮胎侧向力与侧滑角关系曲线的斜率的绝对 值就越大,即轮胎的扭转刚度就越大。

轮胎的侧弯刚度随系统自由度发生变化,不 便直接调整。通过调整轮胎侧向力系数来间接改 变轮胎侧弯刚度,计算得到对应的摆振区域图,研 究轮胎侧弯刚度对前起落架摆振的影响规律。

某航空子午线轮胎侧向力系数 0.002 0/rad, 在该数值附近变动,分别计算轮胎侧向力系数 $k_{\lambda 1}=0.001$ 9/rad, $k_{\lambda 2}=0.002$ 0/rad, $k_{\lambda 3}=0.002$ 1/ rad时系统的摆振区域图,分别如图 9~图 11 所示。

图 9 轮胎侧向力系数 k_{λ1}=0.001 9/rad 时的摆振区域图 Fig. 9 Diagram of tire shimmy zone when lateral force coefficient is k_{λ1}=0.001 9/rad

图 11 轮胎侧向力系数 k₂₃=0.002 1/rad 时的摆振区域图 Fig. 11 Diagram of tire shimmy zone when lateral force coefficient is k₂₃=0.002 1/rad

从图 9~图 11 可以看出:随着轮胎侧向力系数 逐渐增大,处于低速区和高速区的摆振稳定区域 逐渐增大,处于中速区的扭转摆振和侧向摆振的 重叠区域减小;当轮胎侧向力系数从ka=0.0019/ rad 增大到 ka3=0.002 1/rad,摆振区域图左 HH分 盆点速度从 7.4 m/s 增大到 8.6 m/s, 右 HH 分岔 点速度从 70.6 m/s减小到 56.9 m/s;轮胎侧向力 系数的增大对扭转摆振 Hopf 分岔曲线没有影响, 侧向摆振分岔曲线处于中速区的最小临界减摆阻 尼逐渐增大,从144.6 N·m·s/rad逐渐增大到 572.5 N·m·s/rad。从摆振区域图不同的分区进 行理解,随着轮胎侧向力系数的逐渐增大,摆振稳 定区(①区和⑦区)逐渐增大,扭转摆振区(⑤区和 ⑥区)逐渐减小,侧向摆振区(②区和③区)逐渐减 小,扭转摆振和侧向摆振的重叠区(④区)逐渐 减小。

3 轮胎扭转、侧弯刚度对摆振影响的 敏感度分析

第2节通过计算不同轮胎回正力矩系数、轮胎侧向力系数时的摆振区域图,分别研究了轮胎扭转刚度、轮胎侧弯刚度对前起落架摆振的影响规律。横向对比各自摆振区域图的数据,研究轮胎扭转、侧弯刚度对摆振影响的敏感性。主要对比的数据是摆振区域图的HH1分岔点速度V1,HH2分岔点速度V2,扭转摆振分岔曲线最大临界减摆阻尼C_{φ1},侧向摆振分岔曲线中速区的最小临界减摆C_{φ2}。通过将各刚度系数的增量均调整为1%,比较摆振区域图四个参数变化的百分比,进而研究轮胎扭转、侧弯刚度对摆振影响的敏感性。由于不同的增量,对应参数变化的趋势不同,为了便于直观看出敏感性,仅比较其变化的绝对值,如表2所示。

表2 轮胎回正力矩系数、侧向力系数变化1%时摆振 区域图各参数变化百分比

Table 2 Change percentage of parameters in the shimmy zone diagram when tire vertical stiffness, positive torque coefficient and lateral force coefficient change by 1%

松阳团庄	参数变化百分比/%					
北加附及 -	V_1	\overline{V}_2	$C_{\psi 1}$	$C_{\psi 2}$		
k _α	3.14	4.54	0.88	33.87		
k_{λ}	0.83	2.00	0	19.98		

从表 2 可以看出:轮胎回正力矩系数每变化 1%, HH_1 分岔点速度 V_1 变化3.14%, HH_2 分岔点 速度 V_2 变化4.54%,扭转摆振最大临界减摆阻尼 $C_{\phi 1}$ 变化0.88%,侧向摆振中速区最小临界减摆阻 尼 $C_{\phi 2}$ 变化33.87%;而轮胎侧向力系数每变化 1%, HH_1 分岔点速度 V_1 变化0.83%, HH_2 分岔点 速度 V_2 变化2%,扭转摆振最大临界减摆阻尼 $C_{\phi 1}$ 不变,侧向摆振中速区最小临界减摆阻尼 $C_{\phi 2}$ 变化 19.98%。因此,轮胎扭转刚度对前起落架摆振影 响的敏感度大于轮胎扭转刚度。

轮胎刚度的变化,对摆振区域图四个典型参数影响的敏感性从大到小依次为:侧向摆振中速区最小临界减摆阻尼 $C_{\varphi 2}$, HH_2 分岔点速度 V_2 , HH_1 分岔点速度 V_1 ,扭转摆振最大临界减摆阻尼 $C_{\varphi 10}$ 可以得出,轮胎刚度的变化对侧向摆振影响的幅度要远大于对扭转摆振影响的幅度。

4 结 论

(1)随着轮胎回正力矩系数减小,轮胎扭转刚 度减小,处于低速区和高速区的摆振稳定区域逐 渐增大,处于中速区的扭转摆振区逐渐增大,侧向 摆振区逐渐减小,扭转摆振和侧向摆振的重叠区 逐渐减小。轮胎回正力矩系数每减小1%,扭转摆 振最大临界减摆阻尼减小0.88%,侧向摆振中速 区最小临界减摆阻尼增大33.87%,即减小轮胎扭 转刚度有利于抑制摆振。

(2)随着轮胎侧向力系数增大,轮胎侧弯刚度 增大,处于低速区和高速区的摆振稳定区域逐渐 增大,扭转摆振区逐渐减小,侧向摆振区逐渐减 小,扭转摆振和侧向摆振的重叠区逐渐减小。轮 胎侧向力系数每增大1%,扭转摆振最大临界减摆 阻尼不变,侧向摆振中速区最小临界减摆阻尼增 大19.98%,即增大轮胎侧弯刚度有利于抑制 摆振。

(3)轮胎扭转刚度对前起落架摆振影响的敏感性大于轮胎侧弯刚度,而且各刚度的变化对侧向摆振的影响远大于扭转摆振的影响。

上述结论均是对于该模型在特定参数下所得 出的,改变某一参数,结论中某些具体数值可能会 发生变化,但影响规律是值得参考的。本文所使 用的前起落架摆振数学模型尚未考虑机身特性, 在未来的研究中,可以继续完善前起落架摆振模 型,使用分岔理论的方法,研究其余参数对前起落 架摆振的影响规律。

参考文献

[1] 诸德培.摆振理论及防摆措施[M].北京:国防工业出版 社,1984.

ZHU Depei. Shimmy theory and anti-shimmy measures [M]. Beijing: National Defence Industry Press, 1984. (in Chinese)

- [2] PLAKHTIENKO N P, SHIFRIN B M. Critical shimmy speed of nonswiveling landing-gear wheels subject to lateral loading [J]. International Applied Mechanics, 2006, 42, 1077-1084.
- [3] ERET P, KENNEDY J, BENNETT G J. Effect of noise reducing components on nose landing gear stability for a midsize aircraft coupled with vortex shedding and freeplay [J]. Journal of Sound and Vibration, 2015, 354: 91–103.
- [4] 向宗威,冯广,姜义尧,等.飞机起落架结构间隙对摆振稳 定性影响研究进展[J]. 航空工程进展,2022,12(3):86-95.

XIANG Zongwei, FENG Guang, JIANG Yiyao, et al. Research progress on impact of aircraft landing gear structural clearance on shimmy stability[J]. Advances in Aeronautical Science and Engineering, 2022, 12(3): 86–95. (in Chinese)

- [5] 常正, 聂宏, 冯飞, 等. 飞机柔性前起落架摆振仿真分析
 [J]. 航空工程进展, 2011, 2(4): 432-436,484.
 CHANG Zheng, NIE Hong, FENG Fei, et al. Simulation and analysis of shimmy of aircraft flexible nose landing gear
 [J]. Advances in Aeronautical Science and Engineering, 2011, 2(4): 432-436,484. (in Chinese)
- [6] 杜进,魏小辉,蔡佳圻,等.油液压缩性对飞机摆振特性的影响[J].航空工程进展,2015,6(2):171-176.
 DU Jin, WEI Xiaohui, CAI Jiaqi, et al. Effect of oil compressibility on shimmy characteristics of aircraft[J]. Advances in Aeronautical Science and Engineering, 2015, 6(2): 171-176. (in Chinese)
- [7] 周进雄,诸德培."结构型"摆振及其影响因素[J].强度与环境,1998,2(2):62-65.
 ZHOU Jinxiong, ZHU Depei. Structural shimmy and its influencing factors [J]. Strength and Environment, 1998,2 (2):62-65. (in Chinese)
- [8] DIONISIO H J, SANTICIOLLI F, ECKERT J, et al. The influence of tire characteristics on shimmy stability [C] // 23rd ABCM International Congress of Mechanical Engineering. [S.1.]: ABCM, 2015: 1–8.
- [9] PODGORSKI W, KALLAN I, RAND R H. The wheel shimmy problem: its relationship to wheel and road irregularities[J]. Vehicle System Dynamics, 1975, 4(1): 9-41.
- [10] 陈熠,崔荣耀,巨荣博,等.考虑机体动力特性的前起落架 摆振分析[J].西北工业大学学报,2018,36(2):388-395.

CHEN Yi, CUI Rongyao, JU Rongbo, et al. Analysis of nose landing gear shimmy considering the dynamic characteristics of the airframe[J]. Journal of Northwestern Polytechnical University, 2018, 36(2): 388-395. (in Chinese)

- [11] 冯飞,常正,聂宏,等.飞机柔性对前起落架摆振的影响分析[J].航空学报,2011,32(12):2227-2235.
 FENG Fei, CHANG Zheng, NIE Hong, et al. Analysis of influence of aircraft flexibility on nose landing gear shimmy
 [J]. Acta Aeronautica et Astronautica Sinica, 2011, 32 (12):2227-2235. (in Chinese)
- [12] 何绪飞,艾剑良,宋智桃. 民机起落架摆振仿真与虚拟适航验证[J]. 机械工程学报, 2018, 54(14): 179-184.
 HE Xufei, AI Jianliang, SONG Zhitao. Simulation and virtual air-worthiness verification of civil aircraft landing gear
 [J]. Chinese Journal of Mechanical Engineering, 2018, 54 (14): 179-184. (in Chinese)
- [13] THOTA P, KRAUSKOPF B, LOWENBERG M. Bifurcation analysis of nose-landing-gear shimmy with lateral and longitudinal bending [J]. Journal of Aircraft, 2010, 47: 87-95.
- [14] THOTA P, KRAUSKOPF B, LOWENBERY M. Influence of tire inflation pressure on nose landing gear shimmy
 [J]. Journal of Aircraft, 2010, 47(5): 1697–1703.
- [15] KEWLEY S, LOWENBERG M, NEILD S, et al. Investigation into the interaction of nose landing gear and fuselage dynamics[J]. Journal of Aircraft, 2016, 53(4): 881-891.
- [16] RAHMANI M, BEHDINAN K. Parametric study of a novel nose landing gear shimmy damper concept[J]. Journal of Sound and Vibration, 2019, 457: 299–313.
- [17] RAHMANI M, BEHDINAN K. Interaction of torque link freeplay and Coulomb friction nonlinearities in nose landing gear shimmy scenarios [J]. International Journal of Nonlinear Mechanics, 2020, 119: 103338.
- [18] 陈大伟.起落架摆振的非线性分析及控制[D].南京:南京 航空航天大学,2011.
 CHEN Dawei. Nonlinear analysis and control of landing gear shimmy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese)
- [19] 冯飞.起落架非线性摆振分岔分析[D].南京:南京航空航天大学,2014.
 FENG Fei. Bifurcation analysis of nonlinear shimmy of landing gear[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. (in Chinese)
- [20] 蔡佳圻.飞机起落架摆振动力学分析及其非线性问题研究
 [D].南京:南京航空航天大学,2015.
 CAI Jiaqi. Dynamic analysis and nonlinear characteristic re-

search on landing gear shimmy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. (in Chinese)

- [21] THOTA P, KRAUSKOPF B, LOWENBERY M. Interaction of torsion and lateral bending in aircraft nose landing gear shimmy[J]. Nonlinear Dynamics, 2009, 57(3): 455-467.
- [22] THOTA P, KRAUSKOPF B, LOWENBERY M. Multiparameter bifurcation study of shimmy oscillations in a dualwheel aircraft nose landing gear [J]. Nonlinear Dynamics, 2012, 70: 1675–1688.
- [23] TERKOVICS N, NEILD S, LOWENBERG M, et al. Bifurcation analysis of a coupled nose-landing-gear-fuselage system[J]. Journal of Aircraft, 2014, 51(1): 259-272.
- [24] 冯飞,罗波,张策.轮间距与双轮共转对飞机起落架摆振的影响分析[J].振动与冲击,2019,38(6):212-217.
 FENG Fei, LUO Bo, ZHANG Ce, et al. Analysis of the influence of wheel spacing and co-rotation on aircraft landing gear shimmy[J]. Vibration and Shock, 2019, 38(6):212-217. (in Chinese)
- [25] DHOOGE A, GOVAERTS W, KUZNETSOV Y A. MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs[J]. ACM Transactions on Mathematical Software, 2003, 29(2): 141-164.
- [26] 于秀伟,常正,金秀芬.基于Matlab/Simulink的前起落架 摆振动力学模型分析[J].航空工程进展,2013,4(3): 312-318.

YU Xiuwei, CHANG Zheng, JIN Xiufen. Mechanical model analysis of nose landing gear swing vibration based on Matlab/Simulink[J]. Advances in Aeronautical Science and Engineering, 2013, 4(3): 312-318. (in Chinese)

作者简介:

冯广(1982-),男,博士研究生,高级工程师。主要研究方向:起落架稳定性分析与设计。

丁建宾(1998-),男,硕士研究生。主要研究方向:起落架稳 定性分析与设计。

姜义尧(1992一),男,博士研究生。主要研究方向:起落架稳 定性分析与设计。

金 军(1964-),男,学士,研究员级高级工程师。主要研究 方向:起落架稳定性分析与设计。

余好文(1993-),男,硕士,工程师。主要研究方向:起落架稳 定性分析与设计。

蒋炳炎(1963-),男,博士,教授。主要研究方向:大型飞机起 落架设计,虚拟样机仿真技术。

(编辑:丛艳娟)